Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

T. Seethalakshmi, ${ }^{\text {a }}$<br>P. Venkatesan, ${ }^{\text {b }}$ Ray J. Butcher, ${ }^{\text {c }}$ M. Nallu ${ }^{\text {d }}$ and P. Kaliannan ${ }^{\text {a }}$<br>${ }^{\mathrm{a}}$ School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\mathbf{b}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {c }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ${ }^{\text {d Department of Chemistry, Bharathidasan }}$ Institute of Technolohy, Tiruchirappalli 620 024, India

Correspondence e-mail: kal_44in@yahoo.co.in

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.064$
$w R$ factor $=0.164$
Data-to-parameter ratio $=23.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 1-Allyl-4-aminopyridinium bromide

The asymmetric unit of the title structure, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, contains two independent cations and two anions. In one cation, the dihedral angle between the mean planes of the pyridinium ring and the allyl group is $86.43(6)^{\circ}$, while in the other cation this dihedral angle is $72.93(7)^{\circ}$. In the crystal structure, anions and cations are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, forming one-dimensional chains along [010].

## Comment

In human peripheral mononuclear cells isolated from healthy volunteers, derivatives of pyridinium compounds have been identified. 4-Aminopyridine (4AP) has been found to be an efficient drug, affecting potassium permeability and capable of provoking membrane depolarization (Grissmer et al., 1992) and is also able to induce an increase in intracellular calcium influx through modulation of the activity of purinergic cationic channels (Lajdova et al., 2004). We report here the crystal structure of the title pyridinium derivative, (I).

(I)

The asymmetric unit of (I) consists of two independent pyridinium cations (labelled $A$ and $B$ ) and two bromide anions (Fig. 1). The bond lengths and angles within the pyridinium ring are comparable with those in reported structures (Seethalakshmi, Kaliannan et al., 2006; Seethalakshmi et al., $2006 a, b, c)$. The dihedral angle between the mean planes of the pyridinium ring and allyl group is $86.4(6)^{\circ}$ for cation $A$ and 72.93 (7) ${ }^{\circ}$ for cation $B$.

In the crystal structure, atom N 2 of each cation acts as a donor for an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond with two different symmetry-related bromide anions (Table 1 and Fig. 2). These hydrogen bonds link cations $A$ and $B$ into a onedimensional chain parallel to the $b$ axis, which can be described by graph-set motif $C(5)$.

## Experimental

A solution of 4 -aminopyridine ( $1.175 \mathrm{~g}, 25 \mathrm{ml}$ ) and allyl bromide $(1.51 \mathrm{~g}, 25 \mathrm{ml})$ in dry acetone ( 20 ml ) was stirred for 44 h at room
temperature (303 K). The solid that separated was filtered, washed with dry acetone and dried in a vacuum to give the stable salt, (I), which was recrystallized from an aqueous ethanol ( $80 \% \mathrm{v} / \mathrm{v}$ ) solution (yield 74\%).

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=215.10$
Triclinic, $P \overline{1}$
$a=6.9085$ (19) $\AA$
$b=9.179$ (3) $\AA$
$c=14.186$ (4) $\AA$
$\alpha=90.096(4)^{\circ}$
$\beta=97.446(4)^{\circ}$
$\gamma=94.164(4)^{\circ}$

$$
\begin{aligned}
& V=889.6(5) \AA^{3} \\
& Z=4 \\
& D_{x}=1.606 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.56 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.49 \times 0.32 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker APEX-2 CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.171, T_{\text {max }}=0.307$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0581 P)^{2}\right. \\
& \quad+8.4291 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

9293 measured reflections 4585 independent reflections 3443 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$ $\theta_{\text {max }}=28.9^{\circ}$
$w R\left(F^{2}\right)=0.164$
$S=1.06$
4585 reflections
199 parameters
H-atom parameters constrained


Figure 1
View of the aymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are represented by circles of arbitrary radii.


Figure 2
The crystal structure of (I), viewed along the $a$ axis. Intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are indicated by dashed lines.

Lajdova, I., Chorvat, D. Jr, Spustova, V. \& Chorvatova, A. (2004). Can. J. Physiol. Pharmacol. 82, 50-56.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Seethalakshmi, T., Kaliannan, P., Venkatesan, P., Fronczek, F. R. \& Thamotharan, S. (2006). Acta Cryst. E62, o2353-o2355.
Seethalakshmi, T., Venkatesan, P., Fronczek, F. R., Kaliannan, P. \& Thamotharan, S. (2006a). Acta Cryst. E62, o2560-o2562.
Seethalakshmi, T., Venkatesan, P., Fronczek, F. R., Kaliannan, P. \& Thamotharan, S. (2006b). Acta Cryst. E62, o3389-o3390.
Seethalakshmi, T., Venkatesan, P., Butcher, R. J., Nallu, M. \& Kaliannan, P (2006c). Acta Cryst. E62, o4010-04011.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

